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Abstract

The nonlinear development of inviscid G�ortler vortices in a three{dimensional boundary layer is
considered. We do not follow the classical approach of weakly nonlinear stability problems and
consider a mode which has just become unstable. Instead we extend the method of Blackaby,
Dando & Hall (1993), which considered the closely related nonlinear development of distur-
bances in strati�ed shear ows. The G�ortler modes we consider are initially fast growing and

we assume, following others, that boundary{layer spreading results in them evolving in a linear
fashion until they reach a stage where their amplitudes are large enough and their growth rates
have diminished su�ciently so that amplitude equations can be derived using weakly nonlin-
ear and non{equilibrium critical{layer theories. From the work of Blackaby, Dando & Hall

(1993) it is apparent, given the range of parameters for the G�ortler problem, that there are

three possible nonlinear integro{di�erential evolution equations for the disturbance amplitude.
These are a cubic due to viscous e�ects, a cubic which corresponds to the novel mechanism

investigated in this previous paper and a quintic. In this paper we shall concentrate on the two
cubic integro{di�erential equations and in particular on the one due to the novel mechanism

as this will be the �rst to a�ect a disturbance. It is found that the consideration of a spatial
evolution problem as opposed to temporal (as was considered in Blackaby, Dando & Hall 1993)

causes a number of signi�cant changes to the evolution equations.
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1 Introduction

Since the work of G�ortler (1940) there has been considerable interest in the boundary layer

instability mechanism named after him. Much of the early work on G�ortler vortices was shown

to be awed, by Hall (1982a,b), because it invoked the parallel ow approximation and thus

ignored the e�ects of boundary{layer growth. Hall (1983) went on to show that for G�ortler

vortices of order{one wavenumber the ideas of unique neutral curves and growth rates are

untenable. The stability properties of such modes depend upon the initial form and location of

the disturbance.

Since the early 1980's there have been numerous theoretical studies on G�ortler vortices (the

reader is referred to the review papers by Hall 1990 and Saric 1994 for an overview of the

subject). Most of these papers have concentrated on two{dimensional boundary layers but

obviously many practical situations in which G�ortler vortices arise will be three{dimensional in
nature. One example of particular interest has been caused by the development of laminar ow
control airfoils which have areas of concave curvature on the underside of the airfoil near the
leading edge. When the wing is swept the ow becomes fully three{dimensional. Consequently
a number of recent studies have considered the stability of G�ortler vortices in three{dimensional

boundary layers and this three{dimensionality has been shown to have an important e�ect upon
the stability properties of these vortices.

Bassom & Hall (1991) looked at the viscous and inviscid stability problems for an incom-
pressible boundary layer ow, which could support both G�ortler and crossow vortices, over an
in�nitely long swept cylinder. They found that, for su�ciently large values of the parameter

representing the degree of three{dimensionality of the ow, there are no G�ortler vortices present
in a boundary layer which, in the zero crossow case, is centrifugally unstable. The inviscid
stability problem has been extended to compressible boundary layers by Dando (1992). Similar
results to the incompressible case are found; three{dimensionality has a stabilizing e�ect on
vortices of all wavelengths except for a band of small wavelengths where the vortices are dom-

inated by crossow e�ects and are in fact of the type considered by Gregory, Stuart & Walker
(1955). The numerical results of Dando (1992) showed that for larger Mach numbers a larger
crossow was needed to completely stabilize G�ortler vortices over a band of wavenumbers and
this was con�rmed by the asymptotic study of Fu & Hall (1994) who considered the hypersonic

limit.

One of the most interesting points to emerge from the work of Bassom & Hall (1991) and

Dando (1992) was that in the presence of a relatively weak crossow, G�ortler vortex distur-

bances of all wavelengths are stabilized such that the inviscid modes possess some of the largest
growth rates whilst also being neutral at certain other wavenumbers. Furthermore their govern-

ing equation has many similarities to the Taylor{Goldstein equation which governs the linear
stability of strati�ed shear ows. In fact Blackaby & Choudhari (1993) have illustrated the close

connection between the two problems of inviscid G�ortler modes in three{dimensional boundary
layers and modes on unstable strati�ed shear layers, and proposed a de�nition of a generalized

Richardson number (this is the parameter which characterizes the strati�cation of a shear ow)

for such centrifugally{driven instabilities. The weakly nonlinear study of Bassom & Otto (1993)
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used a classical approach to consider the stability of O(G
1

5 ) wavenumber (here G is the G�ortler

number), essentially viscous, modes in three{dimensional boundary layers. In the present paper

we restrict our attention to the O(1) wavenumber inviscid modes.

It was this close connection between the two problems which encouraged the authors, in their

desire to develop a theory describing the nonlinear evolution of these inviscid G�ortler modes, to

initially consider the nonlinear evolution of modes on strati�ed shear layers in Blackaby, Dando

& Hall (1993). In order to place the latter paper and the current piece of work in context and

understand the theory underpinning both it is necessary to review some of the recent contribu-

tions to nonlinear critical{layer theory (see the review papers by Stewartson 1981 and Maslowe

1986 for a more general and complete review of the theory). Over the last couple of decades

much attention has been focussed on the nonlinear stability of non{strati�ed shear layers. In

the case where there is no vertical density variation the linear stability of the ow is usually

governed by the familiar Rayleigh equation (to which the Taylor{Goldstein equation reduces

for zero Richardson number). Benney & Bergeron (1969) developed the so{called equilibrium
critical layer theory: here the mode is treated as `quasi{steady' inside the critical layer as well
as outside it. Nonlinearity a�ects the jump imposed across the critical layer and hence leads

to modi�ed results for the neutral (equilibrium) modes. Haberman (1972) extended the theory
to include critical layers where viscosity is also signi�cant. Some of the early studies of non{
equilibrium critical layers include the work of Brown & Stewartson (1978), Warn &Warn (1978)
and Hickernell (1984). The key paper by Hickernell (1984) concerned a shear layer a�ected by
Coriolis (rotational) e�ects; here the weakly nonlinear theory leads to an integro{di�erential

equation rather than the (previously) more familiar Stuart{Watson{Landau equation with its
`polynomial' nonlinear terms. In fact such integro{di�erential equations result naturally from
non{equilibrium nonlinear critical layer theories when the shear layer is coupled with other
physical factors such as, for instance, Coriolis e�ects (eg. Hickernell 1984; Shukhman 1991);
compressibility e�ects (eg. Goldstein & Leib 1989); three{dimensionality e�ects (eg. Gold-

stein & Choi 1989; Wu, Lee & Cowley 1993) and buoyancy e�ects (eg. Churilov & Shukhman
1988; Blackaby, Dando & Hall 1993). However the case of a `simple' shear layer, not a�ected
by any additional physical factors, is a special case in the sense that it does not lead to an
integro{di�erential equation; instead, Goldstein & Leib (1988), found that the nonlinear evolu-
tion of a disturbance was governed by the full unsteady nonlinear critical{layer equations. This

di�erence is due to the additional physical factors, of the former cases, resulting in stronger
singularities of the inviscid disturbance quantities at the critical level.

At �rst sight, it appears that weakly nonlinear theories can only be usefully applied to

marginally unstable ows; they rely on small growth rates and so the unstable disturbance of
concern must be near to a neutral state. Thus it was believed that such theories are of no use
in describing the initial evolution of `far{from{neutral' unstable modes. However, a number

of recent studies have derived integro{di�erential equations, using weakly nonlinear theories,

to describe the nonlinear evolution of (general) unstable modes on a variety of shear layers
(see the previous paragraph). These studies are based on the idea that, in actual physical

ow situations, shear layer spreading or other external changes would result in the otherwise
relatively unstable modes having their growth rates diminished in real terms, so that a weakly

nonlinear critical{layer theory becomes appropriate. The work in this paper is based on the
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assumption that boundary layer growth acts in a similar manner to shear layer spreading. This

theory is supported by the work of Michalke (1964), Crighton & Gaster (1976) and the excellent

comparison with experiments recently achieved by Hultgren (1992). For further discussion of

non{equilibrium critical layer theory the reader is directed to the reviews of Cowley & Wu

(1993) and Goldstein (1994).

In this study we use weakly nonlinear and non{equilibrium critical{layer theories to describe

the spatial, nonlinear development and evolution of inviscid, unstable G�ortler modes in an in-

compressible, weakly three{dimensional boundary{layer. The theory of this paper is extendable

to compressible boundary layers and also has obvious applications to inviscid modes in a ow

above a heated plate, similar to those considered by Hall & Morris (1992).

Whilst di�erent from the approach adopted in this study, there are alternate/complementary

nonlinear theories that have been developed recently in which two or more of the ow distur-

bances mutually interact. Such theories generally require smaller disturbance amplitudes but

may also need the disturbances to exist in speci�c `con�gurations'. These other theories are
generally referred to as wave/wave and vortex/wave interactions. For a discussion of wave/wave
interactions and resonant triads the reader is directed to the book by Craik (1985). The ideas
behind resonant triads and non{equilibrium critical layers have been combined in works by
Goldstein & Lee (1992) and Wu (1992) which both consider resonant triad interactions where

the growth rates of the disturbance are controlled by nonlinear interactions inside critical layers.
Strongly nonlinear vortex/wave interactions were �rst looked at by Hall & Smith (1991) and
their ideas were clari�ed and extended by Brown, Brown, Smith & Timoshin (1993) and Smith,
Brown & Brown (1993). Recent work has in fact shown mathematical connections between
these di�erent nonlinear theories. Wu, Lee & Cowley (1993) in their non{equilibrium nonlinear
critical layer study showed that the viscous limit of their amplitude equation is the same as the

amplitude equation obtained by Brown, Brown, Smith & Timoshin (1993) in their vortex/wave
interaction paper.

The rest of this paper is laid out as follows. In the next section we present some back-
ground details of the ow concerning us in this paper, namely inviscid G�ortler vortices in
three{dimensional boundary layers. In x3 the ow outside the critical layer is considered whilst

x4 deals with the ow inside the critical layer, concentrating on deriving the non{viscous cu-

bic amplitude equation. In x5 we consider briey the viscous cubic amplitude equation. In
x6 we look at some numerical solutions for the non{viscous cubic before �nally drawing some
conclusions in x7.

2 Inviscid G�ortler Vortices in Three{Dimensional

Boundary Layers

At this point it is helpful to recap the scalings and arguments that lead to the governing

equation for inviscid G�ortler vortices in three{dimensional boundary layers. In this paper we
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shall consider an incompressible ow. For a more detailed derivation of this governing equation

see Bassom & Hall (1991) and for the compressible case see Dando (1992).

The boundary layer considered is that of a ow over the in�nite cylinder y = 0, �1 < z <1

so that the z{axis is a generator of the cylinder and y measures the distance normal to the

surface. The x{coordinate measures distance along the curved surface, which has variable

curvature (1=m)K(x=l) where m and l are length scales. The Reynolds number, R, G�ortler

number, G, and curvature parameter, �, are de�ned by

R =
U1l

�
; (2:1a)

G = 2R
1

2 � ; (2:1b)

� =
l

m
; (2:1c)

where U1 is a typical ow velocity in the streamwise direction and � is the kinematic viscosity
of the uid.

The Reynolds number is assumed to be large, whilst � is su�ciently small so that as �! 0
the parameter G is �xed and of order one. The basic three{dimensional boundary layer is taken

to be of the form

u = U1[u(X;Y ); R
�

1

2 v(X;Y ); R�
1

2��w(X;Y )]:[1 +O(R�
1

2 )] ; (2:2)

with
X = x=l Y = R

1

2y=l ; (2:3a; b)

where the parameter �� is a measure of the relative strength of the crossow present. The basic

state is perturbed by writing

u = U1[u+ � ~U(X;Y )E; vR�
1

2 + �R�
1

2 ~V (X;Y )E;

R�
1

2��w + �R�
1

2 ~W (X;Y )E]:[1 +O(R�
1

2 )] ; (2:4a)

p = p(X;Y ) +R�1 ~P (X;Y )E ; (2:4b)

where �� 1 and

E = expfiaR
1

2 z=lg : (2:5)

We now consider the inviscid limit of the G�ortler problem by introducing a scaled spatial growth

rate, �, and the scalings

[ ~U(X0; Y ); ~V (X0; Y ); ~W (X0; Y ); ~P (X0; Y )] = [U(Y );

G
1

2V (Y ); G
1

2W (Y ); GP (Y )]� exp

�Z
G

1

2�(X)dX

�
; (2:6a)

�� = G
1

2� ; (2:6b)

which were obtained independently by Timoshin (1990) and Denier, Hall & Seddougui (1991) for

two{dimensional problems. Here X = X0 is the local streamwise location under consideration.
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Upon substituting these expansions into the continuity and momentum equations and letting

G!1 we obtain

�U +
dV

dY
+ iaW = 0 ; (2:7a)

(�u+ ia�w)U + uY V = 0 ; (2:7b)

(�u+ ia�w)V +KuU = �
dP

dY
; (2:7c)

(�u+ ia�w)W + �wY V = �iaP : (2:7d)

From these it can easily be shown that

d2V

dY 2
+

"
�a2 �

(�uY Y + ia�wY Y )

(�u+ ia�w)
+

a2Ku uY

(�u+ ia�w)2

#
V = 0 ; (2:8)

and this is subject to the boundary conditions V (0) = 0 and V ! 0 as Y ! 1. This is the
equation that controls the inviscid growth of G�ortler vortices in an incompressible, weakly three{
dimensional boundary layer and, as noted earlier, it is very similar to the Taylor{Goldstein
equation. We note that in Bassom & Hall (1991) and Dando (1992) it was chosen to scale the
curvature, K, out of this equation, this was possible because of the local nature of the problem

considered. At this point it is illustrative to reproduce three �gures from Dando (1992) and
consider some solutions of equation (2.8). The plots we show are of the scaled growth rate,
~� = K�

1

2�, against the spanwise wavenumber, a, for three values of the scaled crossow,
~� = K�

1

2�. In Figure 2.1 we have no crossow, in Figure 2.2 we have ~� = 5 and for Figure
2.3 we have taken ~� = 10. For further details the reader is referred to Bassom & Hall (1991)
and Dando (1992) but these three diagrams illustrate clearly the e�ect that crossow has on
the stability of G�ortler vortices. Thus in the presence of a relatively weak crossow, G�ortler
vortices of almost all wavelengths are stabilized such that the inviscid modes possess some of

the largest growth rates whilst also being neutral at certain other wavenumbers.
The close relationship between equation (2.8) and the Taylor{Goldstein equation was con-

sidered in detail by Blackaby & Choudhari (1993). In particular they proposed a generalized
de�nition of the Richardson number for such vortex ows, namely

J =
a2KucuY c

(�uY c + ia�wY c)2
; (2:9)

where the subscript c's denote evaluation at the critical level, Y = Yc, where (�u+ ia�w) = 0.
It is possible to calculate neutral curves for the G�ortler modes (see Figure 1 in Blackaby &

Choudhari 1993 and x6 of this paper) and then using the same de�nition of � as for the
strati�ed shear layer problem,

� = �
1

2
(1� 4J)

1

2 ; (2:10)

we can calculate numerically the values of � on these neutral curves. It is found for the G�ortler
problem that � < �1

2
and so from Blackaby, Dando & Hall (1993) we know that for this range

of the parameter � there are three possible evolution equations; a viscous{cubic; a non{viscous{

cubic (this is the equivalent of the novel non{viscous{cubic from this previous paper, it arose
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from a perturbation to the Richardson number and was denoted as the J1{cubic) and a quintic.

For our numerical calculations we shall consider a Falkner{Skan{Cooke pro�le for the base

ow (see Bassom & Hall 1991 and Dando 1992). In order for a similarity variable to exist for

the compressible problem (see Stewartson 1964 and Dando 1992) it is necessary to consider a

model uid and so for this earlier work we have taken a Prandtl number of unity. Here our

consideration of an incompressible ow restricts us to e�ectively a Prandtl number of unity

although we shall see later in x5 that this is a special case for the viscous{cubic. A similar

de�nition of the Richardson number is available for the compressible G�ortler problem where we

again �nd that � < �1

2
(see Dando 1993).

3 Outside the Critical Layer

In order to derive the desired evolution equations a study of the fundamental and other higher

harmonics is necessary both inside and outside of the critical layer. The details of this study
are dependent on the ow under consideration but the method is quite general and can be
applied to other ows (the reader will note many similarities between the next two sections and
the corresponding work in Blackaby, Dando & Hall 1993 for the strati�ed shear layer problem
where some aspects are discussed in more detail). In this section we consider the ow outside

the critical layer whilst the following two sections are devoted to that inside the critical layer.

3.1 Scalings and Notation

It is wise, before embarking on the analysis of the critical layer, to consider for a moment the
various x{scales that we have in this problem. In addition to the non{dimensional boundary

layer variable, X (de�ned by equation 2.3a), we have to consider:

(i) the fast scale, X̂ = G
1

2X say, of the disturbance which was implicit in the scalings (2.6a)
and was necessary for the derivation of the governing equation (2.8);

(ii) the slower scale, ~X = G
1

2�X, over which the disturbance amplitude evolves (� is a small
parameter);

(iii) the slowest scale x1 = ��1X (provided G�
1

4 � �), over which the mean ow varies.

Due to the length of many of the equations in the critical{layer analysis we shall try to

use as much abbreviated notation as possible. In particular the real functions q0, q1 and q2 will
be de�ned by

iq0 = (�u0 + ia�0w0) ; (3:1a)

iq1 = (�u1 + ia[�1w0 + �0w1]) ; (3:1b)

iq2 = (�u2 + ia[�2w0 + �1w1 + �0w2]) : (3:1c)

Note that the critical layer Y = Yc occurs when q0 = 0. Also u1,u2, w1, w2, �1 and �2 are real

functions of x1 and for example

u1 = x1u0X(X0) ; (3:2a)
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�2 =
1

2
x21�0XX(X0) : (3:2b)

Similarly the perturbation to the curvature, K1, is also a real function of x1. From this point

onwards dashes on mean ow quantities will denote derivatives with respect to Y . It is also

implicit that all of the mean ow quantities in the critical layer analysis (x3.3, x4, x5 and x6)

are the values evaluated at the critical layer. We shall not explicitly write a subscript c to

denote this.

3.2 The Solvability Condition

In order to derive the evolution equation we expand the fundamental as

V1 = �V
(1)
1 + ��V

(2)
1 + � � � ; (3:3)

where � is a small parameter characterizing the magnitude of the mode. Here V
(1)
1 is the

neutral mode of the inviscid linear problem and V
(2)

1 takes into account the ~X{dependence of
the solution. We note that

V
(1)

1 = B�( ~X)V (Y ) and V (Y ) � jY � Ycj
1

2
+� as (Y � Yc)! 0 ; (3:4)

where the + and � sign on the B denote, respectively, above and below the critical layer. The
second term in the expansion of V1 satis�es the equation

LV
(2)
1 = Q1 ; (3:5)

subject to the boundary conditions V
(2)

1 (Y = 0) = 0 and V
(2)

1 ! 0 as Y ! 1, where the
operator L is given by

L =

"
@2

@Y 2
+

 
�a2 �

q
00

0

q0
+
a2K0u0u

0

0

(iq0)
2

!#
; (3:6)

and the right hand side, Q1, by

Q1 =

"
�
q1
q0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
�
a2K0u0u

0

0

(iq0)
2

 
u

0

1

u
0

0

+
u1

u0
+
K1

K0

!
+

(q
00

1 + a2q1)

q0

#
V

(1)
1

+

"
�
u0

iq0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
+

(u
00

0 + a2u0)

iq0

#
@V

(1)
1

@ ~X
: (3:7)

The solution to this equation can be considered to be the sum, V
(2)
1 = V

(2)

1PI + V
(2)

1CF , of a

particular integral, V
(2)

1PI , and the complementary function, V
(2)

1CF . As Y � Yc ! 0

V
(2)

1CF = B�a
(2)

1�jY �Ycj
1

2
+�(1+O(jY �Ycj

�1))+B�b
(2)

1�jY �Ycj
1

2
��(1+O(jY �Ycj

�1)) ; (3:8)
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where a
(2)

1� and b
(2)

1� are constants as yet undetermined. Note that if the Frobenius roots, 1

2
� j�j

di�er by an integer then equation (3.8) is no longer appropriate (logarithms are needed). As

such cases (� = 1

2
m; m an integer) are isolated, we choose not to concern ourselves with them

(and their immediate neighborhood) in this paper.

A solvability condition for the above boundary{value problem is required. Note that: (i)

the operator L is self{adjoint away from the critical level Y = Yc (where q0 = 0), and (ii) the

right{hand side of (3.5) is singular at Y = Yc.

Following the method of Hickernell (1984) we derive the solvability condition by multiply-

ing both sides of equation (3.5) by V
(1)
1 and integrating over all Y , excluding the (sole) critical

layer at Y = Yc. After integrating by parts; imposing the boundary conditions at Y = 0;1;

and the asymptotic forms of V
(1)

1 and V
(2)

1CF as Y ! Yc, we �nd thatZ
1

0
� V

(1)

1 Q1 = �[V
(1)

1 V
(2)0

1CF � V
(1)0

1 V
(2)

1CF ]
Yc+
Yc�

� 2�[B2
+b

(2)

1+ +B2
�b

(2)

1�]

Z
1

0
� V

(1)
1 Q1 = 2�B2

+(b
(2)
1+ � i�4�b

(2)
1�) ; (3:9)

where the barred integral signs denote the �nite parts of these integrals and we have used the
relationships B� = i�1�2�B+, B+ � B (see x4.1). Manipulating the left{hand side of this
equation we �nd that the solvability condition becomes

(I3 � i�4�I1)
@B

@ ~X
+ (I4 � i�4�I2)B = 2�B(b

(2)
1+ � i�4�b

(2)
1�) ; (3:10)

where I1, I2, I3 and I4 are given by

I1 =
Z Yc

0
� V (Y )

"
�
u0

iq0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
+

(u
00

0 + a2u0)

iq0

#
V (Y )dY ; (3:11a� d)

I2 =
Z Yc

0
� V (Y )

"
�
q1
q0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
�
a2K0u0u

0

0

(iq0)
2

 
u

0

1

u
0

0

+
u1

u0
+
K1

K0

!
+
(q

00

1 + a2q1)

q0

#
V (Y )dY ;

I3 =
Z
1

Yc

� V (Y )

"
�
u0

iq0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
+

(u
00

0 + a2u0)

iq0

#
V (Y )dY ;

I4 =
Z
1

Yc

� V (Y )

"
�
q1
q0

 
@2

@Y 2
�
a2K0u0u

0

0

(iq0)
2

!
�
a2K0u0u

0

0

(iq0)
2

 
u

0

1

u
0

0

+
u1

u0
+
K1

K0

!
+
(q

00

1 + a2q1)

q0

#
V (Y )dY :

3.3 The Asymptotic Expansions as (Y � Yc)! 0

In terms of the critical layer variable � = ��1(Y � Yc) we �nd that the asymptotes for V and
�, as (Y � Yc)! 0, where the function � is given by

�l = Vl �
la2

(1
2
� �)iq

0

0

Pl ; (3:12)
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(l denotes the harmonic), for the fundamental, zeroth and second harmonics are

V1 = ��
1

2
+�

"
B�j�j

1

2
+� + � � �

#
+ ��

3

2
+�

"
B�j�j

3

2
+�

 
q

00

0

q
0

0(1 + 2�)
+

(1� 2�)

4

 
q

00

0

q
0

0

�
u

00

0

u
0

0

�
u

0

0

u0

!!

+B�j�j
1

2
+�a

(2)
1� + � � �

#
+ ��

3

2
��

"
B�j�j

1

2
��b

(2)
1�

#
+ � � � ; (3:13a)

�1 = ��
1

2
+� [0] + ��

3

2
+�

"
B�j�j

3

2
+�

 
q

00

0

(1 + 2�)q
0

0

�
u

00

0

2u
0

0

�
u

0

0

2u0

!#

+��
3

2
��

"
j�j

1

2
���2�b

(2)
1�B�

(1
2
� �)

#
+ � � � ; (3:13b)

V0 = �2��1+2�
�
0

�
+ � � � ; (3:14)

V2 = �2��1+2�
"
�

(1 + 2�)

(3 � 2�)iq
0

0

B2
�j�j

�1+2�+� � �

#
+� � � ; (3:15a)

�2 = �2��1+2�
�
0
�
+ � � � : (3:15b)

4 The Critical Layer

The main purpose of this section is to derive a second relation between b
(2)

1+ and b
(2)

1� (the �rst
being given by the solvability condition derived in the last section, 3.10) in order that we can
obtain the desired nonlinear evolution equation. Denoting functions of � by a hat we �nd that
the governing equations in the critical layer are

ÛX + V̂� + ŴZ = ��[Û ~X] ; (4:1)

u0Û ~X + (�u
0

0 + u1)ÛX + u
0

0V̂ + (��0w
0

0 + �0w1 + �1w0)ÛZ = ���2[Û ÛX + �Û Û ~X + V̂ Û�

+Ŵ ÛZ ]� �[(�u
0

0 + u1)Û ~X + (
1

2
�2iq

00

0 + �iq
0

1 + iq2)lÛ + (�u
00

0 + u
0

1)V̂ ] + ���3[Û��] ; (4:2)

K0u0Û + P̂� = ��[(�K0u
0

0 +K1u0 +K0u1)Û ]� ��1[
1

2
K0Û

2] ; (4:3)

u0Ŵ ~X + (�u
0

0 + u1)ŴX + �0w
0

0V̂ + (��0w
0

0 + �0w1 + �1w0)ŴZ + P̂Z =

���2[ÛŴX + �ÛŴ ~X + V̂ Ŵ� + Ŵ ŴZ]� �[(�u
0

0 + u1)Ŵ ~X + (
1

2
�2iq

00

0 + �iq
0

1 + iq2)lŴ

9



+(��0w
00

0 + �1w
0

0 + �0w
0

1)V̂ ] + ���3[Ŵ��] ; (4:4)

where we have retained on the right hand sides the leading order e�ects due to nonlinearity,

viscosity and terms leading to a perturbation of the generalized Richardson number of Blackaby

& Choudhari (1993), see equation (2.9).

In the rest of this section we shall solve the governing equations for the relevant higher

order terms of the harmonics. As suggested by the work of Blackaby, Dando & Hall (1993) we

consider in this initial work two evolution equations, a non{viscous{cubic and a viscous{cubic.

In this section we shall concentrate on deriving the non{viscous{cubic which is the equivalent

of the J1{cubic from this previous paper. In order to do this it is helpful to introduce the

operator

N̂l;� =

"
u0

@

@ ~X
+ l(�iq

0

0 + iq1)

#
@

@�
� l�iq0 ; (4:5)

where l again denotes the harmonic. We have assumed that ���3 � 1, ie. viscous e�ects are

not large enough to a�ect the operator, N̂l;�, at leading order.
The solution inside the critical layer is again constructed in the form of a Fourier series;

we expand the fundamental, zeroth and second harmonics, respectively, as follows

V̂1 = ��
1

2
+� V̂

(1)
1 + � � �+ �3��

5

2
+3�V̂

(2)
1 + � � �+ ��

3

2
+� V̂

(3a)
1 + � � �

+��
3

2
�� V̂

(3b)
1 + � � �+ �3��

3

2
+3� V̂

(4)
1 + � � � ; (4:6a)

V̂0 = �2��1+2� V̂
(1)
0 + � � �+ �2�2� V̂

(2)
0 + � � � ; (4:6b)

V̂2 = �2��1+2� V̂
(1)
2 + � � �+ �2�2� V̂

(2)
2 + � � � ; (4:6c)

and similarly for the Û 's, Ŵ 's, P̂ 's and �̂'s. These expansions are not necessarily completely

ordered (depending on the relative sizes of � and �) and moreover we have only retained the
terms necessary for deriving the desired evolution equation. The scalings follow directly from
the outer asymptotes and/or by considering the process of harmonic generation.

4.1 O(��
1

2
+�) of the fundamental

At this order the governing equations give

�Û
(1)
1 + V̂

(1)
1� + iaŴ

(1)
1 = 0 ; (4:7a)

u0Û
(1)

1 ~X
+ (�iq

0

0 + iq1)Û
(1)
1 + u

0

0V̂
(1)
1 = 0 ; (4:7b)

K0u0Û
(1)

1 + P̂
(1)

1� = 0 ; (4:7c)

u0Ŵ
(1)

1 ~X
+ (�iq

0

0 + iq1)Ŵ
(1)

1 + �0w
0

0V̂
(1)

1 + iaP̂
(1)

1 = 0 : (4:7d)
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From these four equations we �nd that

N̂1; 1
2
+� V̂

(1)
1 =

1

2
(1� 2�)iq

0

0�̂
(1)
1 ; (4:8a)

N̂1; 1
2
���̂

(1)
1 = 0 ; (4:8b)

and a solution of these two equations which matches to the outer solution is

V̂
(1)
1 ( ~X; �) =

(1 + 2�)i
3

2
��

2�(1
2
� �)

 
u0

q
0

0

! 1

2
+� Z

1

0
dtB( ~X � t)t�

3

2
�� exp

(
�it

"
�
q

0

0

u0
+
q1
u0

#)
; (4:9)

�̂
(1)

1 = 0 : (4:10)

For a detailed discussion of the solution of equations of the type of (4.8a,b) the reader is directed

to Churilov & Shukhman (1988) and Dando (1993). Note however, that for the G�ortler problem

because of the range of � (� < �1

2
) we do not have to consider the integral on the complex

contour C as was required for the strati�ed shear ow problem. Matching with the asymptotes
outside the critical layer yields

B� = i�1�2�B+ ; (B+ � B) : (4:11)

The function V̂
(1)

1 ( ~X; �) has a single asymptotic representation in the lower{half plane (�� �
arg � � 0)

V̂
(1)

1 ( ~X; �) = B( ~X)�
1

2
+� +O(��

1

2
+�) as j�j ! 1 : (4:12)

Later we shall derive evolution equations for the amplitude, B( ~X), but for the moment we can
regard it as an arbitrary function that satis�es the requirement B( ~X)! 0 as ~X ! �1. This
requirement is consistent with the initial condition used for our evolution equation (see x6),

which itself is a result of insisting that the solution of the evolution equation matches to an
`earlier' linear stage.

4.2 O(�2��1+2�) of the second harmonic

Equations (4.1{4) give at this order

2�Û
(1)
2 + V̂

(1)
2� + 2iaŴ

(1)
2 = 0 ; (4:13a)

u0Û
(1)

2 ~X
+ 2(�iq

0

0 + iq1)Û
(1)

2 + u
0

0V̂
(1)

2 = �[�Û
(1)

1 Û
(1)

1 + V̂
(1)

1 Û
(1)

1� + iaŴ
(1)

1 Û
(1)

1 ] ; (4:13b)

K0u0Û
(1)
2 + P̂

(1)
2� = 0 ; (4:13c)

u0Ŵ
(1)

2 ~X
+ 2(�iq

0

0 + iq1)Ŵ
(1)
2 + �0w

0

0V̂
(1)
2 + iaP̂

(1)
2 =

11



�[�Û
(1)

1 Ŵ
(1)

1 + V̂
(1)

1 Ŵ
(1)

1� + iaŴ
(1)

1 Ŵ
(1)

1 ] ; (4:13d)

from which we can obtain the two equations

N̂2; 1
2
+� V̂

(1)
2 = (1 � 2�)iq

0

0�̂
(1)
2 + 2(V̂

(1)
1� V̂

(1)
1� � V̂

(1)
1 V̂

(1)
1��) ; (4:14a)

N̂2; 1
2
���̂

(1)
2 = 0 : (4:14b)

We note that the right{hand sides of these last two equations do not involve the conjugate of

V̂
(1)

1 and so V̂
(1)

2 and �̂
(1)

2 have unique asymptotic representations as j�j ! 1 (in the lower half

plane of complex �). A solution of these equations which matches to the outside is

V̂
(1)

2 =
i�2�(1 + 2�)2

4u0�2(1
2
� �)

 
u0

q
0

0

!2� Z
1

0
dt

Z
1

0
dt1

Z
1

0
dt2B( ~X � t� t1)B( ~X � t� t2)(t1t2)

�
3

2
���

(t1 � t2)
2(t1 + t2)

1

2
+�(2t+ t1 + t2)

�
3

2
�� exp

(
�i(2t+ t1 + t2)

"
�
q

0

0

u0
+
q1
u0

#)
; (4:15a)

�̂
(1)
2 = 0 ; (4:15b)

(again see Churilov & Shukhman 1988 and Dando 1993 for a discussion of the solution of
equations like 4.14a where there is a non{zero right hand side).

4.3 O(�2��1+2�) of the zeroth harmonic

Here we �nd the governing equations are

V̂
(1)
0� = 0 ; (4:16a)

u0Û
(1)

0 ~X
+ u

0

0V̂
(1)
0 = �[V̂

(1)
1 Û

(1)
�1� + V̂

(1)
�1 Û

(1)
1� � iaŴ

(1)
1 Û

(1)
�1 + iaŴ

(1)
�1 Û

(1)
1 ] ; (4:16b)

K0u0Û
(1)

0 + P̂
(1)

0� = 0 ; (4:16c)

u0Ŵ
(1)

0 ~X
+ �0w

0

0V̂
(1)
0 = �[��Û

(1)
1 Ŵ

(1)
�1 + �Û

(1)
�1 Ŵ

(1)
1 + V̂

(1)
1 Ŵ

(1)
�1� + V̂

(1)
�1 Ŵ

(1)
1� ] ; (4:16d)

where we have used the notation V̂
(1)
�1 for example to denote the complex conjugate of V̂

(1)
1 . For

our later working it is necessary to know Û
(1)
0 , V̂

(1)
0 and Ŵ

(1)
0 . From the above four equations

and (4.7a-d) we �nd that

Û
(1)
0 = �

(1� 2�)

a2K0u0(1 + 2�)

@

@�
(V̂

(1)
�1�V̂

(1)
1� ) ; (4:17a)

V̂
(1)
0 = 0 ; (4:17b)

Ŵ
(1)

0 =

 
�

2

ia(1 + 2�)iq
0

0

+
�(1� 2�)

ia(1 + 2�)a2K0u0

!
@

@�
(V̂

(1)

�1�V̂
(1)

1� ) : (4:17c)
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4.4 O(�3��
5

2
+3�) of the fundamental

This is the order of the largest nonlinear term and for many critical{layer problems we would

expect to obtain our jump here. However, the four governing equations are

�Û
(2)

1 + V̂
(2)

1� + iaŴ
(2)

1 = 0 ; (4:18a)

u0Û
(2)

1 ~X
+ (�iq

0

0 + iq1)Û
(2)
1 + u

0

0V̂
(2)
1 = �[�Û

(1)
2 Û

(1)
�1 + �Û

(1)
0 Û

(1)
1 + V̂

(1)
2 Û

(1)
�1� + V̂

(1)
�1 Û

(1)
2� + V̂

(1)
1 Û

(1)
0�

+V̂
(1)
0 Û

(1)
1� � iaŴ

(1)
2 Û

(1)
�1 + 2iaŴ

(1)
�1 Û

(1)
2 + iaŴ

(1)
0 Û

(1)
1 ] ; (4:18b)

K0u0Û
(2)

1 + P̂
(2)

1� = 0 ; (4:18c)

u0Ŵ
(2)

1 ~X
+ (�iq

0

0+ iq1)Ŵ
(2)

1 + �0w
0

0V̂
(2)

1 + iaP̂
(2)

1 = �[��Û
(1)

2 Ŵ
(1)

�1 +2�Û
(1)

�1 Ŵ
(1)

2 + �Û
(1)

0 Ŵ
(1)

1

+V̂
(1)
2 Ŵ

(1)
�1� + V̂

(1)
�1 Ŵ

(1)
2� + V̂

(1)
1 Ŵ

(1)
0� + V̂

(1)
0 Ŵ

(1)
1� + iaŴ

(1)
2 Ŵ

(1)
�1 + iaŴ

(1)
0 Ŵ

(1)
1 ] ; (4:18d)

and from these we can derive the equation

N̂1; 1
2
���̂

(2)
1 = 0 : (4:19)

The solution of this which matches to the outside is

�̂
(2)
1 = 0 ; (4:20)

and so we do not obtain a jump from this largest nonlinear term (this is exactly as expected from
the corresponding work on strati�ed shear layers of Churilov & Shukhman 1988 and Blackaby,
Dando & Hall 1993).

4.5 O(��
3

2
+�) of the fundamental

It is at this order that we �rst get terms on the right{hand sides of the governing equations

due to the perturbation of the `Richardson number'. However, the situation is much more

complicated than for the strati�ed shear ow case as instead of just perturbing the Richardson
number we now have to perturb the quantities in our generalized Richardson number, equation

(2.9). We also have ~X{derivatives of previous critical{layer terms and higher order corrections
to the base ow values appearing on the right{hand sides. Neither of these two e�ects were

present for the strati�ed shear layer case considered in Blackaby, Dando & Hall (1993) and they

are a result of considering a spatial as opposed to a temporal evolution problem. These e�ects
combined with the need to perturb u, w, � and K, cause most formulas from this point on to be
considerably longer than their counterparts for the strati�ed shear ow problem. Speci�cally

(4.1{4) give

�Û
(3a)
1 + V̂

(3a)
1� + iaŴ

(3a)
1 = �Û

(1)

1 ~X
; (4:21a)
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u0Û
(3a)

1 ~X
+ (�iq

0

0 + iq1)Û
(3a)
1 + u

0

0V̂
(3a)
1 =

�[(�u
0

0+u1)Û
(1)

1 ~X
+(

1

2
�2iq

00

0+�iq
0

1+ iq2)Û
(1)
1 +(�u

00

0+u
0

1)V̂
(1)
1 ] ; (4:21b)

K0u0Û
(3a)
1 + P̂

(3a)
1� = �[(�K0u

0

0 +K1u0 +K0u1)Û
(1)
1 ] ; (4:21c)

u0Ŵ
(3a)

1 ~X
+ (�iq

0

0 + iq1)Ŵ
(3a)
1 + �0w

0

0V̂
(3a)
1 + iaP̂

(3a)
1 =

�[(�u
0

0 + u1)Ŵ
(1)

1 ~X
+ (

1

2
�2iq

00

0 + �iq
0

1 + iq2)Ŵ
(1)
1 + (��0w

00

0 + �1w
0

0 + �0w
0

1)V̂
(1)
1 ] : (4:21d)

From these four equations we can obtain the equation for �̂
(3a)
1 , namely

N̂1; 1
2
���̂

(3a)
1 = u

0

0V̂
(1)

1 ~X
+ iq

0

0

"
�

(
q

00

0

q
0

0

�
(1 + 2�)

2

 
u

00

0

u
0

0

+
u

0

0

u0

!)

+

(
q

0

1

q
0

0

�
(1 + 2�)

2

 
u

0

1

u
0

0

+
u1

u0
+
K1

K0

!)#
V̂

(1)
1 ; (4:22)

and instead of solving this explicitly we �nd it easier to write the solution in terms of previously
calculated functions;

�̂
(3a)
1 =

"
�

( 
q

00

0

(1 + 2�)q
0

0

�
u

00

0

2u
0

0

�
u

0

0

2u0

!)
+

(
1

2�

 
�

q1q
00

0

(1 + 2�)q
02
0

+
q

0

1

q
0

0

+
q1
2q

0

0

 
u

00

0

u
0

0

+
u

0

0

u0

!

�
(1 + 2�)

2

 
u

0

1

u
0

0

+
u1

u0
+
K1

K0

!!)#
V̂

(1)
1 +

"
1

2�iq
0

0

 
u0u

00

0

2u
0

0

+
3u

0

0

2
�

u0q
00

0

(1 + 2�)q
0

0

!#
V̂

(1)

1 ~X
: (4:23)

4.6 O(��
3

2
��) of the fundamental

The governing equations give

�Û
(3b)
1 + V̂

(3b)
1� + iaŴ

(3b)
1 = 0 ; (4:24a)

u0Û
(3b)

1 ~X
+ (�iq

0

0 + iq1)Û
(3b)
1 + u

0

0V̂
(3b)
1 = 0 ; (4:24b)

K0u0Û
(3b)
1 + P̂

(3b)
1� = 0 ; (4:24c)

u0Ŵ
(3b)

1 ~X
+ (�iq

0

0 + iq1)Ŵ
(3b)
1 + �0w

0

0V̂
(3b)
1 + iaP̂

(3b)
1 = 0 ; (4:24d)

and from these we obtain

N̂1; 1
2
+� V̂

(3b)
1 =

1

2
(1� 2�)iq

0

0�̂
(3b)
1 ; (4:25a)

N̂1; 1
2
���̂

(3b)
1 = 0 : (4:25b)
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These two equations have solutions

V̂
(3b)
1 = �̂

(3b)
1 = 0 ; (4:26)

and this implies that there is no linear contribution to the evolution equation from inside the

critical layer, instead it all comes from outside the critical layer. Later we shall balance our

selected nonlinear term with this order and then derive our second relation involving b
(2)
1+ and

b
(2)
1� by matching with the outside asymptotes.

4.7 O(�2�2�) of the second harmonic

At this order equations (4.1{4) give

2�Û
(2)
2 + V̂

(2)
2� + 2iaŴ

(2)
2 = �Û

(1)

2 ~X
; (4:27a)

u0Û
(2)

2 ~X
+2(�iq

0

0+iq1)Û
(2)

2 +u
0

0V̂
(2)

2 =

�

�
2�Û

(1)

1 Û
(3a)
1 + Û

(1)

1 Û
(1)

1 ~X
+ V̂

(1)

1 Û
(3a)
1� + V̂

(3a)
1 Û

(1)

1� + iaŴ
(1)

1 Û
(3a)
1 + iaŴ

(3a)
1 Û

(1)

1

�

�
�
(�u

0

0 + u1)Û
(1)

2 ~X
+ (�2iq

00

0 + 2�iq
0

1 + 2iq2)Û
(1)
2 + (�u

00

0 + u
0

1)V̂
(1)
2

�
; (4:27b)

K0u0Û
(2)
2 + P̂

(2)
2� = �[

1

2
K0Û

(1)
1 Û

(1)
1 ]� [(�K0u

0

0 +K1u0 +K0u1)Û
(1)
2 ] ; (4:27c)

u0Ŵ
(2)

2 ~X
+2(�iq

0

0+iq1)Ŵ
(2)
2 +�0w

0

0V̂
(2)
2 +2iaP̂

(2)
2 =

�
�
�Û

(1)
1 Ŵ

(3a)
1 + �Û

(3a)
1 Ŵ

(1)
1 + Û

(1)
1 Ŵ

(1)

1 ~X
+ V̂

(1)
1 Ŵ

(3a)
1� + V̂

(3a)
1 Ŵ

(1)
1� + 2iaŴ

(1)
1 Ŵ

(3a)
1

�

�

�
(�u

0

0 + u1)Ŵ
(1)

2 ~X
+ (�2iq

00

0 + 2�iq
0

1 + 2iq2)Ŵ
(1)

2 + (��0w
00

0 + �1w
0

0 + �0w
0

1)V̂
(1)

2

�
: (4:27d)

It is only necessary to �nd �̂
(2)
2 to complete our working at the next order of the fundamental

and from the above four equations we �nd that

N̂2; 1
2
���̂

(2)
2 = u

0

0V̂
(1)

2 ~X
+2iq

0

0

"
�

 
q

00

0

q
0

0

�
(1 + 2�)

2

�
u

00

0

u
0

0

+
u

0

0

u0

�!
+

 
q1
q

0

0

�
(1 + 2�)

2

�
u

0

1

u
0

0

+
u1

u0
+
K1

K0

�!#
V̂

(1)
2

+
(1� 2�)iq

0

0

2a2K0u0

�
2V̂

(1)
1� V̂

(1)

1� ~X
� V̂

(1)

1 ~X
V̂

(1)
1��+ V̂

(1)
1 V̂

(1)

1�� ~X

�
�
2u

0

0

u0
V̂

(1)
1 V̂

(1)
1� +

(1 � 2�)iq
0

0

a2K0u
2
0

(�iq
0

0+iq1)V̂
(1)
1� V̂

(1)
1�

+

�
2V̂

(1)

1� �̂
(3a)
1� � 2V̂

(1)

1 �̂
(3a)
1��

�
: (4:28)

We again choose not to solve this explicitly but instead write the solution as
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4.8 O(�2�2�) of the zeroth harmonic

The governing equations give at this order
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Û

(3a)
�1 V̂

(1)
1 + Û
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For our working in the next subsection, at order (�3��
3
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+3�) of the fundamental, we need to be
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4.9 O(�3��
3

2
+3�) of the fundamental

It is at this order that the non{viscous cubic jump will arise. The governing equations (4.1{4)

eventually yield at this order
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1 is a function proportional to V̂
(2)

1 whilst R
(4)

3 is given explicitly by

R
(4)

3 =
(1 � 2�)(�iq

0

0 + iq1)

(1 + 2�)a2K0u
2
0

"
V̂

(1)

1�

�
V̂

(1)

�1�V̂
(1)

1��+V̂
(1)

�1��V̂
(1)

1�

�#
+
(1 � 2�)iq

0

0

2a2K0u
2
0

"
(�iq

0

0+iq1)

�
1

4
V̂

(1)

2� V̂
(1)

�1�

�
1

2
V̂

(1)

�1 V̂
(1)

2�� + V̂
(1)

2 V̂
(1)

�1��

�
�

(3 � 2�)iq
0

0

8
V̂

(1)

�1 V̂
(1)

2� +
(1� 2�)iq

0

0

2
V̂

(1)

2 V̂
(1)

�1�

#
+

�
�
u

0

0

u0
+
u1

u0
+
K1

K0

�
�

"
�
1

2
V̂

(1)
�1 V̂

(1)
2�� + V̂

(1)
2 V̂

(1)
�1�� �

1

2
V̂

(1)
2� V̂

(1)
�1� � V̂

(1)
1�

�
�Û
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To derive an evolution equation the asymptotic representation of V̂
(4)
1 is needed. This is
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and in particular D
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After splitting R
(4)
3 into three parts: �rstly one containing ~X derivatives; secondly one involving

terms of the second harmonic; and �nally one that contains neither, we denote the pieces of
the jump due to these parts by by subscript 1, 2 and 3 respectively so
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where the terms on the right{hand side are given in Appendix A. Matching the inner asymptote,

(4.36), with the outer asymptote, (3.13a), leads to the relations

D
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1+B+ ; D

(4)
� = i1�2�b

(2)
1�B� ; (4:39a; b)

which can be combined to give
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and so we have found our second relation between b
(2)

1+ and b
(2)

1�.

5 The Viscous Cubic

In order to derive a viscous{cubic evolution equation it would be necessary to consider some
additional critical layer terms and instead of the expansions (4.6) we would have to consider
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We would obtain the viscous{cubic by balancing the nonlinear term at O(�3���
11

2
+3�) with the

term at O(��
3

2
��) and then matching with the outside asymptotes in order to get our second

relationship between b
(2)
1+ and b

(2)
1�.

However, for our current problem this proves to be impossible. It is illustrative to consider
the governing equations in the critical layer at O(����

5

2
+�) where viscous terms �rst appear on

the right{hand sides
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From these we obtain the equation

N̂1; 1
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1 = 0 ; (5:3)

which has a solution
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1 = 0 : (5:4)
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This result is actually implied by the corresponding work on strati�ed shear layers (see Blackaby,

Dando & Hall 1993 for details) because there �̂
(5)
1 contains the factor (Pr�1), where Pr is the

Prandtl number. In this paper we have considered an incompressible uid and hence we have

e�ectively a Prandtl number of unity and as a consequence �̂
(5)
1 = 0. In fact the expression

for the whole viscous cubic jump (see equations 4.45a,b and 4.46 in Blackaby, Dando & Hall

1993) contains the factor (Pr � 1) and hence this viscous cubic jump does not occur for our

present incompressible G�ortler problem. Obviously this nonlinear term will be important if

we take a more realistic value (eg. 0.72 for air) of the Prandtl number but, we note that

for the corresponding compressible problem it is necessary to consider a model uid in order

for a similarity variable to exist for the base ow and this nonlinear term may prove hard to

investigate (see Dando 1995 for a discussion of this nonlinear term for the strati�ed shear ow

problem). We note that for the current problem viscosity still plays a role in the sense that the

non{equilibrium critical{layer analysis of x4 is only valid when ���3 � 1.

6 The Evolution Equations

As the viscous{cubic is not present for our problem (because the Prandtl number is e�ectively
equal to unity) we can write a composite evolution equation in the form

(I3 � i�4�I1)
@B

@ ~X
+ (I4 � i�4�I2)B =

2�B

�
�2��3+4�(b

(2)

1+ � i�4�b
(2)

1�)J1 + �4��7+6� (b
(2)

1+ � i�4�b
(2)

1�)q

�
; (6:1)

where we have derived (b
(2)

1+� i�4�b
(2)

1�)J1 in x4 and (b
(2)

1+� i�4�b
(2)

1�)q denotes the total part of the

jump due to the quintic nonlinearity. We could derive (b
(2)
1+ � i�4�b

(2)
1�)q explicitly in a similar

manner to that in which we calculated the corresponding term in our study on strati�ed shear
layers. However, this would be an extremely long and complicated task for the present problem
and for the moment we shall concentrate instead on obtaining some numerical results for the

non{viscous cubic evolution equation (this will determine how relevant the quintic nonlinearity

is). This evolution equation is valid provided �� G�
1

4 , otherwise the linear term will require
modi�cation (see for instance the amplitude equations 4.1a,b in Hall & Smith 1984).

In Figure 6.1 we show the regions of validity of the various amplitude equations. The

non{viscous cubic becomes important when the amplitude of the disturbance, A � �
3

2
�2� (ie.

when the cubic term becomes as large, O(1), as the linear terms in the evolution equation,
6.1). The quintic term is of the same size as the cubic term when A � �2�� and so, if the
cubic evolution equation results in a signi�cant increase in the amplitude of the disturbance,

the quintic nonlinear term will become the dominant term in the evolution equation.
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6.1 Numerical results for the non{viscous cubic

We now concentrate on obtaining some numerical results for the non{viscous{cubic amplitude

equation that we derived in x4. To ease numerical calculations the jump expression is turned

into kernel form,
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0
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Z
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0
ds s2�4�

Z 1

0
d�

�
B( ~X � s)B ~X(

~X � �s)B( ~X � (1 + �)s)G31(�)

+B ~X(
~X � s)B( ~X � �s)B( ~X � (1 + �)s)G32(�)

�
; (6:2)

where the kernels G11(�), G12(�), G21(�), G22(�), G31(�), G32(�) are all de�ned in Appendix
B. An inspection of this kernel form shows that things are considerably more complicated than
for the corresponding temporal strati�ed shear ow case. The jump now has real and imaginary
parts and there are cubic terms in the evolution equation which contain ~X{derivatives. The

inclusion of spatial derivatives of the amplitude in the nonlinear terms of the evolution equation
is a relatively novel feature for non{equilibrium critical{layer studies. Previously streamwise
derivatives have only been seen in the study of Churilov & Shukhman (1994) on the spatial
evolution of helical disturbances to an axial jet and spanwise derivatives in the work of Gajjar
(1995) on stationary crossow vortices in fully three-dimensional boundary layers. As with
these other works the inclusion of these nonlinear spatial derivative terms is wholly associated

with the spatial formulation of the problem (note that there were no equivalent terms in the
related temporal stability study for strati�ed shear layers). It is no longer possible to determine
whether the `kernel is positive or negative' and so we are unable to deduce the behavior of the
disturbance amplitude, as was done by Churilov & Shukhman (1988) and Blackaby, Dando &

Hall (1993). Instead we are forced to consider numerical solutions.

As mentioned earlier, in x2, it is possible to calculate neutral curves for the G�ortler modes.
In this paper we shall concentrate on obtaining numerical results from the amplitude equation

for the �rst G�ortler mode, as it becomes progressively harder to obtain neutral curves and
�{values for the higher modes. In Figure 6.2 we have plotted the neutral curve for this �rst

mode. We note that the ow is stable to this mode inside the curve plotted and that the left{

hand branch tends towards a constant wavenumber (a = 1:305) as the value of the crossow
parameter tends to in�nity. This limit corresponds to the neutral crossow vortices that are

associated with the inection point of the directional pro�le, and were �rst investigated by
Gregory, Stuart & Walker (1955). In Figure 6.3 we plot the values of �, as determined from

(2.9) and (2.10), on the left{hand branch of this neutral curve for the �rst G�ortler mode. We
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concentrate our attention on this area of the neutral curve as the numerical computations

become more complicated (in particular calculating the integrals I1, I2, I3 and I4; see equations

3.11a-d) as � becomes increasingly negative.

Substituting (6.2) into equation (4.41) and then matching the two relationships we have

derived between b
(2)

1+ and b
(2)

1� (equations 3.10 and 4.41) leads to the evolution equation
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where the constants 1, 2, 3, 4 and 5 are given by
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For our numerical calculations it is convenient to introduce the variable

~x = expf21r ~Xg ; (6:5)

with 1r denoting the real part of 1 (this is similar to the `logarithmic time' variable which
was introduced by Churilov & Shukhman 1988). We also set

B( ~X) = b( ~X) expf1r ~Xg ; (6:6)

and assume that b( ~X)! 1 as ~X !1, note that the requirement B( ~X)! 0 as ~X ! �1 is
satis�ed as 1r is negative. After this we �nd that the evolution equation reduces to
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with the new kernel functions being de�ned as

G1 =
2
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[3(G11 +G12) + 15(G31 +G32)] ; (6:8a)
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Finally we present some numerical solutions for the evolution equation (6.7). We note
that we have not eliminated the parameter x1 from the equation (see 3.11b,d and 3.2) as
it does not occur in all terms (cf. Blackaby, Dando & Hall 1993 where the parameter J1 was

eliminated from the �nal evolution equation) and so for these numerical solutions we have taken
the representative value x1 = 1:0. We consider the e�ect of a small change in the crossow
so we have also taken �1 = 1:0 and K1 = 0. In Figures 6.4a-d we show the evolution of the
amplitude b(~x) for the case when �0 = 10:0 (ie. close to the neutral point a = 1:371). We have
plotted the real part of b(~x) on the x{axis and the imaginary part on the y{axis and from these

Figures we can see that the disturbance evolves in a spiral (in the complex plane of b) with
rapidly increasing amplitude. In fact the amplitude increases so rapidly that the structure of
the spiral is somewhat lost and this is why we show four plots of the evolution (with di�erent
scales). In Figures 6.5a-b we consider the evolution of b(~x) when �0 = 25:0, this is close to the
neutral point a = 1:316. In Figure 6.5a we have plotted the argument of b(~x) (in the range ��

to +�) and in Figure 6.5b we show the amplitude. The evolution again takes the form of a
spiral in the complex plane of b(~x) with a large increase in amplitude but this does not occur as

quickly as for the previous case considered. We note that the rapid increase in the disturbance

amplitude for these two cases means that the disturbance will enter region IIIb in Figure 6.1
where the dominant nonlinear term in the evolution equation is the quintic. This means that it
may be necessary in the future to derive the quintic nonlinear term via a critical layer analysis

similar to that of x4 and obtain numerical solutions for this new evolution equation. However,

if we increase the crossow further we �nd that this rapid increase in the disturbance amplitude
does not occur. In Figures 6.6a-b we plot the argument and amplitude of b(~x) for �0 = 55:0 and

we can clearly see that the amplitude increase has been greatly slowed. If we further increase
the crossow to a value of �0 = 75:0 in Figures 6.7a-b we can see that there is hardly any

increase in the disturbance amplitude. Consequently the disturbance will not enter region IIIb

in Figure 6.1 where the evolution equation would be dominated by the quintic nonlinearity.
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We have shown that, at least for the nonlinear evolution equation with cubic nonlinearity

due to the novel mechanism, crossow has the same e�ect as with a linear stability study: it

has a stabilizing inuence on inviscid G�ortler vortices. As mentioned earlier we have looked at

a ow with a Prandtl number of unity, this was done because we wish to extend this work to

the compressible regime where it is necessary to consider a model uid in order for a similarity

variable to exist for the base ow. However, this particular choice of Prandtl number turns

out to be a mathematical anomally as the viscous{cubic jump expression contains the factor

(� � 1) and so is not existent for this problem. However, if we considered a more general

Prandtl number then the viscous{cubic would be important because, if we consider Figure 6.8,

which shows the regions of validity of the various amplitude equations when the viscous cubic is

present, we see that our above results suggest that for larger values of the crossow parameter

the disturbance will pass from region IIIa to region IIIc where the dominant nonlinear term is

the viscous cubic. Furthermore, for the related strati�ed shear ow problem (Dando 1995) it

is known that the viscous{cubic jump results in an explosive burst{like growth. So it would
appear to be necessary next to consider the viscous{cubic, with � = 0:72, for the G�ortler
problem and determine whether a similar explosive growth occurs (so a disturbance with a
reasonable crossow moves from region IIIa to region IIIc and then onto IIIb) or if su�cient
crossow can prevent this and hence for large values of �0 (which still corresponds to a small

amount of three{dimensionality) inviscid G�ortler vortices will be nonlinearly stable.

7 Conclusion

In this paper we have considered the nonlinear development of inviscid, incompressible G�ortler
vortices in a three{dimensional boundary layer using non{equilibrium critical{layer theory.
From the earlier work of Blackaby, Dando & Hall (1993) we knew that it was necessary to

consider three di�erent amplitude equations, a viscous cubic, a non{viscous cubic and a quintic.
In this study we have concentrated our attention on the two cubic evolution equations (the non{
viscous cubic in particular) as these will be the �rst to a�ect the disturbance amplitude. In
x5 we showed that for the problem we have considered, with a Prandtl number of unity (a

necessary choice in order for a similarity variable to exist for a base ow which is compressible;

we wish to extend this work to the compressible problem), the viscous{cubic jump is zero.
Even if this were not the case we note that, based on our assumptions concerning viscous{

spreading e�ects resulting in an unstable linear disturbance mode approaching a later neutral
state, initially our disturbance will lie in the bottom right{hand corner of Figure 6.1 or 6.8 and

this indicates that the base evolution equation with the non{viscous cubic nonlinearity deserves

the �rst attention. Consequently we have concentrated in this paper on obtaining numerical
solutions of the non{viscous cubic evolution equation.

Our numerical solutions show that for small values of the crossow parameter the dis-

turbance amplitude evolves by describing a spiral, in the complex plane, of rapidly increasing

amplitude. This large increase in the amplitude of the disturbance means that the evolution
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process will soon move on to a stage where the evolution of the mode is governed by an integro{

di�erential amplitude equation with a quintic nonlinearity. In the related study of Blackaby,

Dando & Hall (1993) the integro{di�erential equation with a quintic nonlinearity led to contin-

ued growth of the disturbance amplitude which resulted in the e�ects of nonlinearity spreading

to outside the critical level, by which time the ow has become fully nonlinear. Although

we have pointed out the many similarities between the problems of the nonlinear evolution of

modes on unstable strati�ed shear layers and the nonlinear evolution of inviscid G�ortler vor-

tices in three{dimensional boundary layers we are unable to deduce the behavior of the quintic

integro{di�erential equation for the G�ortler problem from the earlier results of Blackaby, Dando

& Hall (1993) because of the major di�erences in the kernels for the two problems. A large

number of these di�erences (including the novel feature of streamwise derivatives in the nonlin-

ear terms) are due to the spatial formulation of the G�ortler problem as opposed to the temporal

formulation of the problem considered in Blackaby, Dando & Hall (1993). Consequently the

daunting task of obtaining numerical solutions for the quintic integro{di�erential equation for
the G�ortler problem will need to be undertaken in order to clarify further the nonlinear stability
of inviscid G�ortler vortices in ows that are only very slightly three{dimensional.

However, for larger values of the crossow we �nd that the disturbance amplitude still
evolves by describing a spiral in the complex plane but its amplitude increases only very slowly.

Consequently when the Prandtl number is not unity the disturbance will pass from region
IIIa in Figure 6.8 to region IIIc (as opposed to IIIb when the crossow is small) and will be
controlled by an integro di�erential equation with a cubic nonlinearity due to viscous e�ects. In
an investigation of the corresponding strati�ed shear ow problem (Dando 1995) it was found
that the viscous{cubic resulted in large amplitude growth (of either a burst{like nature or by
oscillating). So it would be desirable to investigate the viscous cubic amplitude equation for

the G�ortler problem (with a Prandtl number not equal to unity) and determine whether the
same thing happens or if this amplitude growth is prevented by a su�ciently large crossow (as
we have found for the novel cubic amplitude equation in this paper). This may however, prove
di�cult because for the compressible problem as we need to consider a model uid (Prandtl
number of unity) in order for a similarity variable to exist for the base ow.

As we have already mentioned we wish to extend the work in this paper to a compress-

ible ow. Linear stability studies have showed that a larger crossow is needed to stabilize
the G�ortler vortices when the ow is compressible and it would be interesting to see what ef-
fect compressibility has on the results presented in this paper. We also note that the theory

developed here can be applied to a nonlinear study of the inviscid vortex instabilities in the

three{dimensional ow above a heated plate.
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Appendix A

The three pieces of the non{viscous cubic jump (see equation 4.38) are given by
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where H denotes the Heaviside function.

Appendix B

For our numerical calculations it is necessary to convert the jump expression into kernel form,
(6.2). The kernels in this equation are then given by
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where F is the hypergeometric function of one variable and F1 the hypergeometric function of

two variables (see Erd�elyi 1953 and Abramowitz & Stegun 1964 for details).
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Figure 2.1. Real parts of the scaled growth rate, ~�, when there is no crossow.

Figure 2.2. Real parts of the scaled growth rate, ~�, when the scaled crossow, ~� has a value
of 5.
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Figure 2.3. Real parts of the scaled growth rate, ~�, when the scaled crossow, ~� has a value

of 10.
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Figure 6.1. A diagram of the various regimes of the critical layer when � = 1.

I: viscous, steady critical layer; Landau{Stuart{Watson equation.

II: strongly nonlinear, equilibrium critical layer; Benney & Bergeron theory.

IIIa: unsteady critical layer; largest term in (6.1) is cubic and due to non{viscous e�ects.

IIIb: unsteady critical layer; largest term in (6.1) is quintic.

Solid lines represent boundaries with areas where the critical layers are not unsteady, dashed

lines represent boundaries between di�erent base evolution equations from (6.1) and the dotted

lines indicate the threshold values at which the nonlinear evolution equations become valid.

The thick line on the diagram indicates the evolutionary path of the disturbance for small

values of the crossow parameter.
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Figure 6.2. The neutral curve of the �rst G�ortler mode.

Figure 6.3. The values of � for the left{hand branch of the neutral curve of the �rst G�ortler
mode.
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Figure 6.4a. The real and imaginary parts of b(~x), showing its evolution for �0 = 10, part a.

Figure 6.4b. The real and imaginary parts of b(~x), showing its evolution for �0 = 10, part b.
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Figure 6.4c. The real and imaginary parts of b(~x), showing its evolution for �0 = 10, part c.

Figure 6.4d. The real and imaginary parts of b(~x), showing its evolution for �0 = 10, part d.
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Figure 6.5a. The argument of b(~x) (in the range �� to +�) for �0 = 25.

ARG(b)

~x

Figure 6.5b. The amplitude of b(~x) for �0 = 25.
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Figure 6.6a. The argument of b(~x) (in the range �� to +�) for �0 = 55.
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Figure 6.6b. The amplitude of b(~x) for �0 = 55.
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Figure 6.7a. The argument of b(~x) (in the range �� to +�) for �0 = 75.
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Figure 6.7b. The amplitude of b(~x) for �0 = 75.
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Figure 6.8. A diagram of the various regimes of the critical layer when � 6= 1.

I: viscous, steady critical layer; Landau{Stuart{Watson equation.

II: strongly nonlinear, equilibrium critical layer; Benney & Bergeron theory.

IIIa: unsteady critical layer; largest term in (6.1) is cubic and due to non{viscous e�ects.

IIIb: unsteady critical layer; largest term in (6.1) is quintic.

IIIc: unsteady critical layer; largest term in (6.1) would be cubic and due to viscosity. Solid

lines represent boundaries with areas where the critical layers are not unsteady, dashed lines

represent boundaries between di�erent base evolution equations from (6.1) and the dotted lines

indicate the threshold values at which the nonlinear evolution equations become valid. The

thick line on the diagram indicates the evolutionary path of the disturbance for su�ciently

large values of the crossow parameter.
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